Efficiency of aerosolized nitric oxide donor drugs to achieve sustained pulmonary vasodilation.
نویسندگان
چکیده
Inhalation of nitric oxide (NO) causes selective pulmonary vasodilation, but demands continuous supply of the gaseous agent. We investigated the suitability of aerosolization of NO-donor drugs for achieving sustained reduction of pulmonary vascular tone. In buffer-perfused rabbit lungs, stable pulmonary hypertension was achieved by continuous infusion of the thromboxane-analogue U46619. The NO-donor drugs molsidomine, 3-morpholinosydnone-imine (SIN-1), sodium nitroprusside (SNP) and glyceryl-trinitrate reduced the pulmonary hypertension in a dose-dependent fashion, whether admixed to the perfusate or inhaled as alveolar-accessible aerosol particles (aerosolization time 3-6 min), with an efficiency ranking of SNP > SIN-1 >> molsidomine and glyceryl-trinitrate. Notably, nearly identical dose-response curves were obtained when corresponding molar quantities of the most potent agents, SNP and SIN-1, were applied either via transbronchial or via intravascular routes, with respect to rapidity of onset, extent (pressure reduction to near baseline) and duration (>90 min) of vasorelaxation. Appearance of sydnonimines in the perfusate after aerosolization and reduction of SIN-1 efficacy when nebulized in nonrecirculatingly perfused lungs demonstrated substantial entry of this prodrug into the vascular space after alveolar deposition. In contrast, undiminished vasodilatory efficacy of aerosolized SNP under conditions of non-recirculating perfusion suggested predominant efficacy via local NO release for this agent. We conclude that short aerosolization maneuvers of NO-donor drugs are suitable to achieve dose-dependent, extensive and sustained vasodilation in the pulmonary circulation, thus offering a new therapeutic approach in pulmonary hypertension.
منابع مشابه
Pulmonary vasodilation by nitric oxide gas and prodrug aerosols in acute pulmonary hypertension.
Sodium 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NO; Et2N-[N(O)NO]Na) is a compound that spontaneously generates nitric oxide (NO). Because of its short half-life (2.1 min), we hypothesized that inhaling DEA/NO aerosol would selectively dilate the pulmonary circulation without decreasing systemic arterial pressure. We compared the pulmonary selectivity of this new NO donor with two othe...
متن کاملPilot intervention: aerosolized adrenomedullin reduces pulmonary hypertension.
In pulmonary hypertension, systemic infusion of adrenomedullin (ADM), a potent vasodilator peptide, leads to pulmonary vasodilatation. However, systemic blood pressure declines alike. The present study investigated the effect of aerosolized ADM on pulmonary arterial pressure in surfactant-depleted newborn piglets with pulmonary hypertension. Animals randomly received aerosolized ADM (ADM, n = 6...
متن کاملEffects of BAY 41-2272, a soluble guanylate cyclase activator, on pulmonary vascular reactivity in the ovine fetus.
Nitric oxide (NO)-cGMP signaling plays a critical role during the transition of the pulmonary circulation at birth. BAY 41-2272 is a novel NO-independent direct stimulator of soluble guanylate cyclase that causes vasodilation in systemic and local circulations. However, the hemodynamic effects of BAY 41-2272 have not been studied in the perinatal pulmonary circulation. We hypothesized that BAY ...
متن کاملThe Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation
Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...
متن کاملNitric oxide inhalation transiently elevates pulmonary levels of cGMP, iNOS mRNA, and TNF-a
Brady, Todd C., James D. Crapo, and Robert R. Mercer. Nitric oxide inhalation transiently elevates pulmonary levels of cGMP, iNOS mRNA, and TNF-a. Am. J. Physiol. 275 (Lung Cell. Mol. Physiol. 19): L509–L515, 1998.— The initial pulmonary vasodilation that occurs during nitric oxide (zNO) inhalation does not appear to be maintained chronically in many cases. zNO may acutely relax vascular smooth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 282 2 شماره
صفحات -
تاریخ انتشار 1997